

The Path from Lab to Fab

Andrew Grenville

EUVL Symposium

October 27, 2014

Inpria Design Principles

Small Molecular Building Blocks

Photocondensed Molecular Metal Oxides

High EUV Absorbance Robust Etch & Mechanical Properties

Development Strategy

+ materials, equipment, university and device manufacturer partners

EUV Platform Development

1Q14 2Q14 3Q14 4Q14 1Q15 2Q15 3Q15 First in Gen 2 family Resolution YA-AA

> Low sensitivity **Insufficient contrast**

SPIE'14

First integration proxy material

4Q15

22nm HP: ~90 mJ/cm²

16nm HP: ~90 mJ/cm²

EUV Platform Development

- Substantially improved sensitivity and contrast
- Conventional organic solvents for casting & develop
- Negative tone
- Sn based: absorbance 19/µm (~4-5X typical CAR)
- Target film thickness ~22-30nm

YA-BA: Pitch 32nm, 59 mJ/cm² (PSI) CD 16.5nm, LWR 1.7nm

Mag = 125.00 K X

 $WD = 2.9 \, mm$

EHT = 5.00 kV

PAUL SCHERRER INSTITUT Pixel Size = 893.2 pm

Signal A = InLens

Date :11 Sep 2014

Time: 13:52:56

YA-BA: Pitch 32nm, 39 mJ/cm² (PSI) CD 14.0nm, LWR 2.2nm

Mag = 125.00 K X

 $WD = 2.9 \, mm$

EHT = 5.00 kV

Pixel Size = 893.2 pm

Signal A = InLens

Date: 11 Sep 2014

Time: 11:16:22

YA-BA: Pitch 32nm, 36 mJ/cm² (PSI) CD 12.2nm, LWR 2.5nm

100 nm

Mag = 125.00 K X $WD = 2.9 \, mm$

EHT = 5.00 kV

PAUL SCHERRER INSTITUT Pixel Size = 893.2 pm

Date :11 Sep 2014 Signal A = InLens

Time: 13:16:55

YA-BA Contact Imaging (BMET)

26nm 1:1 Contacts

36mJ/cm² 1.3nm CDU (1σ)

C31P44 quad illumination

22nm 1:1 Contacts

36mJ/cm²

C26P44 quad illumination

YA-BA Contact Imaging (BMET)

EUV Platform Development

Further improved sensitivity and contrast

YD-AA Patterning (BMET)

17nm hp, 40 mJ/cm², 3.6nm LWR

17nm hp, 32 mJ/cm², 4nm LWR

Initial results
Further development underway

C28P52 27 mJ/cm²

Development Strategy

+ materials, equipment, university and device manufacturer partners

Track Integration

- Fab-compatible organic solvents
- Plumbed
 - SVDU
 - Gallon (with 5nm filter)
- Uniform coating
 - Unoptimized film thickness variation: $0.2nm (3\sigma)$

Managing Metals

Topic	Status
Backside rinse	< 1E10 atoms/cm ²
Edge-bead removal	Pending metrology
Strip & rework	~4E11 atoms/cm ² – path to 1E10 a/cm ²

Wafer-Wafer Metal Contamination

Managing Metals

Topic	Status
Backside rinse	< 1E10 atoms/cm ²
Edge-bead removal	Pending metrology
Strip & rework	~4E11 atoms/cm² – path to 1E10 a/cm²
Wafer-wafer	< 1E10 atoms/cm ²

Initial processes developed with path to solution

Outgassing

- Cleanables: pass
 - 3 materials tested
 - EUV & EB
 - No Sn in RGA signal
- Non-cleanables: pass
 - Undetectable (incl Sn)

- Provisional access to NXE3100
- Updated method under development w/ ASML
 - Film thickness vs absorbance

Initial Patterning on NXE3100

24nm dense CH C32P48 **Quasar illumination**

46 mJ/cm²

22nm dense CH

49 mJ/cm²

C31P44

Resist: YA80BA

Contact reticle not optimized for negative tone cell or characterized. Improved LCDU expected with reticle targeted for negative tone.

Pattern Transfer: Etch into SOC

SPIE'14

20nm Inpria Resist

100nm Spin-on-Carbon

EB expose

O₂:N₂ etch

High selectivity provides large process window for SOC open

The Path Ahead

Further improvements in RLS

Full support for regular sampling on NXE33x0

Thank You!

- Inpria team
- LBNL & SEMATECH
 - Chris Anderson, Patrick Naulleau, and MET team
- PSI
 - Yasin Ekinci, Michaela Vockenhuber, and team
- IMEC
 - Danilo De Simone, Ivan Pollentier, Mieke Goethals,
 Geert Vandenberghe, and team
- ... and to all of our partners

